-
Między eksperymentem a harmonogramem – planowanie projektów AI z PERT i Monte Carlo
Czas dostarczenia projektu IT jest niejednokrotnie jednym z kluczowych czynników sukcesu produktu cyfrowego na rynku, a pracochłonność jest często głównym składnikiem jego kosztu. Dlatego tak ważna jest informacja o prawdopodobnym terminie dostarczenia i potencjalnym koszcie projektu. Nie inaczej jest z projektami AI. W gruncie rzeczy są to projekty IT, tyle że rozszerzone o bardzo istotną część jaką są modele ML/AI. Oczywiście w skład mogą wchodzić także inne prace związane z budową urządzeń, montażem czujników, itd. W niniejszym artykule przyjrzymy się również jak za pomocą języka Python wykonać symulacje Monte Carlo w celu oszacowania czasu realizacji zadań metodą PERT by oszacować czas realizacji projektu oraz jego pracochłonność. Niepewność i złożoność zadań…